

— Font

— Color scheme

— Clojure grammar

— Clojure formatting

— REPL

What is this talk about?

Many small ideas unified by a common theme:

“Tools for programming in Clojure”

Won’t help you write better code. Might make you
suffer less during coding though.

This talk is about ideas, not implementation.

Is this a design talk?

Yes.

In a sense.

Part I. The Font

Font: Fira Code

A font with ligatures

Font: Fira Code

A font with ligatures

Font aware of context: programming

Idea: ligatures

fiplease take look at gure 1 at the bottom of the page

f iplease take look at gure 1 at the bottom of the page

Idea: ligatures

->> #(>=(coll (filter % 0))

->> #(>=(coll (filter % 0))

Idea: ligatures

sub hyphen greater greater by hyphen_greater_greater.liga;

Clojure ligatures

Idea: language agnostic

Idea: fix spacing

AVAVAA VV

AVAVAA VV

Idea: fix spacing

AVAVAA VV

AVAVAA VV

Idea: fix spacing

Idea: fix spacing

key

key

::

::

Idea: fix spacing

key

key

::

::

Idea: fix align

:=

:=

x 0

x 0

Idea: fix align

*ptr->x

Idea: contextual alignment

Idea: contextual alignment

www www

Bonus: group parens

)

))

)))

))))

)))))

))))))

...

...

...

...

...

...

)

)

)

)

)

)

...

...

...

...

...

...

2

3

4

5

5+

Fira Code

github.com/tonsky/FiraCode

End of Part I

Part II. The colors

everylighthigh thingt’Can

Can’t highlight everything

Pro-

blem:

Too

many

rules

 expressionsomething

Problem: to_O MUUCH dEcOrAtIoN!!!

Problem: to_O MUUCH dEcOrAtIoN!!!

(punctuation)

“String-like” (string, regexps)

Declarations

;; Comments

Compile-time constants

Idea: few rules you will remember

Idea:

highlight

comments

Idea:

highlight top-level

declarations

Alabaster

 Sublime Text 3

 VS Code

 Vim

 IntelliJ

 Light Table

End of Part II

Part III. The grammar

Problem: approximate

Problem: approximate

Problem: approximate

Idea: pedantically follow the spec

Precise, not approximate

Helpful, not confusing

Parse what should be parsed: no false negatives

Do not parse what shouldn’t: no false positives

Test thoroughly

Don’t be lazy

Idea: report errors

sublime-clojure

github.com/tonsky/sublime-clojure

End of Part III

Part IV. The format

for everyone to agree on

One Clojure formatter

gofmt

De facto Go formatter

Mandatory for all published code

No knobs

Good enough

“Gofmt's style is nobody’s favorite, yet gofmt is
everybody’s favorite.”

Why another formatter?

Clojure Style Guide

Why another formatter?

Clojure Style Guide

cljfmt

Why another formatter?

Clojure Style Guide

cljfmt

emacs

Why another formatter?

Clojure Style Guide

cljfmt

emacs

zprint

Why another formatter?

Clojure Style Guide

cljfmt

emacs

zprint

fipp

Problem: too vague

Optionally omit the new line
between the function name and
argument vector

Optionally omit the new line
between the argument vector and
a short function body

Consider enhancing the readability
of map literals via judicious use of
commas and line breaks.

An exception to the rule is the
grouping of related defs together.

Where feasible, avoid making
lines longer than 80 characters.

An exception can be made to
indicate grouping of pairwise
constructs as found in e.g. let and
cond.

Problem: too specific

Problem: too specific

Problem: too specific

Problem: too specific

Problem: runtime/whitelisting

··

········

(when something

(something-else))

but

(filter something

(something-else))

Everyone to agree on

Now and in the future

No versions, no patches

Any runtime (jvm, js, python, rust?)

Open world

New libraries

New editors

New language features (cond->, when-some, ?#...)

Idea: remove ALL special cases

As simple as it gets

No exceptions

No whitelisting

No runtime dependency

Few rules, applied uniformly

How few?

1. Align lists starting with symbol
with 2 spaces

··

··

(when something

body)

(defn f [x]

body)

··
··

(defn f

[x]

body)

2. Align rest to the bracket

·

·

··

[1 2 3 4

5 6]

{:key 1

:also-key 2}

#{a b c d

e f}

·

·

···

([x]

body)

([x y]

body))

#?(:clj

(Math/round 1))

Bonus: no deep nesting

··

········
(filter even?

(range 1 10))

(filter even?

(range 1 10))

Read more at

tonsky.me/blog/clojurefmt

End of Part IV

Part C. The Conclusion

Writing tools is fun!

Lots to improve.

Huge impact for yourself

Try it!

— Submit a patch to language grammar!

— Remap your keyboard!

— Write a color scheme!

— Add ligatures to a font!

Thank you!

github.com/tonsky

@nikitonsky

